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Blocking an inviscid shear flow 
By MELVIN E. STERN 

Department of Oceanography, Florida State University, Tallahassee, FL 32306, USA 

(Received 12 September 1990 and in revised form 4 December 1990) 

The upstream influence in an inviscid two-dimensional shear flow around a semi- 
circular ‘ cape ’ (radius A )  is computed using a piecewise uniform vorticity model of 
a boundary-layer current. The area of this layer upstream from the cape increases as 
the square root of time t when A is small, and increases as t for larger A .  Complete 
blocking occurs when A is approximately three times the boundary-layer thickness, 
in which case all oncoming particles accumulate in a large upstream vortex. The 
numerical results obtained from the contour dynamical method also show the 
generation of large eddies downstream from the obstacle. 

1. Introduction 
A familiar example of ‘ upstream influence ’ occurs in open channel flow when the 

controlling section is ‘choked ’ so as to  produce a Froude number exceeding unity, in 
which case the regime is changed by an upstream propagating surge wave. A weaker 
upstream influence occurs in a semi-infinite density stratified layer flowing with 
uniform velocity over an obstacle. For a review of the literature on these problems 
see Turner (1973). Hydraulic control can also occur in a rotating channel flow, the 
critical condition being determined by the propagation speed of Kelvin waves (Stern 
1972). Whitehead, Leetma & Knox (1974) and Gill (1977) discuss the control by a 
strait of a shear flow with uniform potential vorticity, and generalizations are given 
by Stern (1975) and Pratt  & Armi (1987). The topographic waves in a homogeneous 
fluid with a cross-stream variation in bottom depth provide another mechanism for 
hydraulic transitions and upstream influence. See Hughes (1986, 1987) for application 
to  coastal currents. 

The validity of the steady state and long-wave approximation used in these 
theories becomes doubtful if there is a flow reversal, and this is most likely to occur 
when an upstream shear current with vanishing wall velocity flows around an 
irregularity on the boundary. I n  this case the shorter waves and time dependence 
must be taken into account, and then the vorticity gradient can lead to  a large 
disturbance propagating upstream. The effect will be demonstrated ($3) for the 
simplest case of inviscid two-dimensional flow around a semi-circular ‘cape ’ (figure 
2). (We remark that such flows are realizable in a rotating fluid because three- 
dimensional turbulence is suppressed, and relative vorticity tends to be conserved.) 

Before turning to this main calculation, some helpful insights will be obtained ($2) 
using a nonlinear long-wave theory, and the simple results will suggest the flow 
reversal effect to  be investigated by a more complete theory. 

A solution of the Euler equations is necessary for this purpose, and the relatively 
simple geometry in figure 2 will be used. Here we have a semi-infinite fluid bounded 
by a wall with a semi-circular ‘cape’ of radius A .  Upstream from this there is a 
piecewise uniform vorticity flow of the boundary-layer type. The temporal evolution 
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FIGURE 1. Schematic diagram of a laminar upstream jet  flowing in a channel whose total width 
varies slowly in the downstream direction. L ( r )  is the steady-state displacement of the interface 
separating the piecewise uniform vorticity layers, and uL(r) is the  downstream velocity. The wall 
velocities are u,(z), u,(r). 

of the interface separating the vortical domains will be computed using the well- 
known contour dynamical method, due consideration being given to the irregular 
boundary condition. 

This obstacle ‘trips’ the boundary layer, producing aperiodic disturbances 
extending far downstream as well as upstream. It is therefore necessary (and maybe 
desirable) to  focus attention mainly on one aspect of these complex effects, viz. the 
fraction of oncoming boundary-layer fluid which is prevented from passing around 
the cape. It will be shown that when the cape radius exceeds the boundary-layer 
thickness, the fluid in this layer accumulates in an upstream eddy. The size of this 
is much larger than the upstream vortex which forms in a uniform vorticity flow 
having either zero viscosity or very large viscosity (Higdon 1985). 

2. Long-wave theory 
2.1. A piecewise vorticity jet in a channel of slowly varying width 

At x = - 00 in figure 1 the non-dimensional vorticity is - 1 for y < 1, and 1/H for 
1 Q y Q H +  1. The non-dimensional basic velocity profile satisfies a(1) = 1, a(0) = 0 
and @( 1 + H) = 0. The undisturbed laminar jet approaches a section centred around 
x = 0 where the wall displacement yb(x) = M ( x )  varies slowly with x, and we assume 
a steady and slowly varying downstream velocity field u(x, y )  3 0. Let uL(x) = u(z, 
1 +L)  denote the velocity on the interface ( y  = 1 +L(z ) )  separating the piecewise 
uniform vorticity laycrs, and let ub = u(x ,M(x ) ) ,  ut = u(x ,  1 +H) .  According to the 
long-wave approximation, the vorticity is - au/ay,  and integration across the stream 
gives UL = u,+ 1 + L - M ,  (2.1) 

U L  = u,+ (H--L)/H.  (2.2) 

The continuity of mass flux for each layer requires 

(u,+u,) (1 + L - M )  = 1, 

(uL+ut)  ( N - L )  = H .  

Equations (2.1) and (2.2) are used to eliminate u,, ut from the last two equations, and 
then the elimination of 2u, gives the following implicit equation for L ( x )  : 

[+l / ( - ( (h+l/h)  = 0 ,  (2.5) 
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where ( =  l + L - M ,  ( 2 . 6 ~ )  

h 1 - L / H .  (2.6b) 

The two (f) solutions for 6 in (2 .5 )  are 

and from ( 2 . 6 a ,  b) another equation for 5 is 

6 = 1 -M--H(h - 1 ) .  ( 2 .8 )  

Elimination o f f  then gives the two solutions 

(Y+) -M = H ( h ,  - 1)-  1 + 

a t  each M ( x ) .  When either A, or A- equals unity, M = 0, and therefore 6 = 1 and 
L ,  = 0. Each of the two solutions of (2.9) start at x = - co (where M = 0) and 
continue to larger x .  Which, if any, of these steady long-wave solutions is a valid 
approximation t o  the more complete equations of motion ? In  connection with this 
question, i t  will now be shown that ifM(x) vanishes a t  x = 0 and if dM(O)/dx + 0 (as 
in figure 1) then both solutions have a flow reversal at x = 0. 

The wall velocity obtained from (2.1), (2 .3 )  and ( 2 . 6 ~ )  is ub = :(1/(-[), and 
therefore ub = 0 and dub/d[ = - 1  a t  the point 5 = 1, which corresponds to 
M(0)  = 0. From (2 .7 ) ,  (2 .8 )  we then obtain dM(l)/dt  = - 1 fH, and it follows that 
dub/dM = (dub/d[) (dM/dg)-' = - (1  f H)-l  at x = 0. For H P 1 this shows that a 
flow reversal ub < 0 occurs on one side or the other of x = 0, and an isolated eddy 
with closed streamlines is implied. But the validity of this must be doubted because 
of the long-wave and steady-state assumptions. 

2.2.  Temporal evolution of long waves 

Further insight may be obtained by relaxing the steady assumption and by 
considering the initial-value problem for a large L ( x , t )  disturbance in a uniform 
channel (i.e. set M ( x )  = 0 in figure 1 ) .  At x = & co in the undisturbed jet the total 
transport between the walls is +( 1 + H ) ,  and since this must equal the total transport 
at any x in the disturbed region is follows that 

(u,+ub) ( l + L ) + ( u L + u t ) ( H - L ( x , t ) )  = H+1. (2 .10 )  

When M = 0, (2 .1)-(2.2)  are still applicable and elimination of (ub,ut) in the above 
relation gives 

( l + L ) ' + ( H - L ) ' / H  
2 u L =  1 +  

H + 1  

In  the 0 < y < L layer the conservation of mass requires 

(2 .11)  

and by using (2 .1 ) ,  (2 .2 )  we get 

aL l a  
- + - - ( ( 1 + L ) ( 2 u , - l - L ) )  = 0 .  
at 2ax  
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When (2.11) is introduced this reduces to the hyperbolic equation 

aL aL 
-+c(L)-  = 0, 
at ax 

where the propagation speed 

c(L) =-L( l - l /H)+&Z/H (2.12) 

is negative for sufficiently large H and for L(x,O) > 0. Under the latter conditions 
(2.11) gives uL+ 1,  and (2.1) gives ub < 0. Since this flow reversal is imposed initially, 
no logical objection can be made to its subsequent presence in the long-wave theory, 
and this shows that the reversal will propagate upstream with the large L-ridge. Of 
course the continual steepening of the wavefront causes the long-wave theory to fail, 
and then the complete Euler equations must be used. Despite these reservations the 
suggestion is that the flow forced by the obstacle (figure 1)  might lead to a flow 
reversal which propagates upstream into a region where the wall is flat. 

It is worth demonstrating that the result of this subsection is not an artifact of the 
piecewise uniform vorticity model, but i t  also occurs for long-wave disturbances in 
a jet whose vorticity f; x -au/ay increases smoothly from y = 0 to y = H +  1 = H. 
This vorticity relation gives 

r ( H - - y ) < d y  =Hu(x,O,t)- udy. 

Since the last term is independent of x, the difference ( A )  in wall velocities a t  any two 
sections (x) is given by 

5." 
(2.13) 

Consider an initial condition in which cach vorticity isopleth (except those a t  y = 
0 , H )  increases its ordinate (y) monotonically with x, from one constant y-value a t  
x = - GO to a larger constant value a t  x = + GO (with the sloping part of the isopleths 
centred a t  x = 0). Then on a line of constant y, the value of f; at a downstream x is 
less than the upstream value at x = - GO, and therefore the right-hand side of (2.13) 
is negative. Since the wall velocities of the jet a t  x = - GO are assumed to vanish, i t  
follows that negative u occur near x = 0, y = 0. Furthermore, the downstream 
pressure gradient is negligible in the long-wave approximation, and each parcel 
conserves its x-momentum (Stern & Paldor 1983). Therefore the maximum upstream 
u on y = 0 is conserved and propagated upstream with its own velocity. This effect 
is similar to that which occurs in the piecewise uniform vorticity model. 

2.3. Upstream propagation in a boundary-layer $ow 
We also want to  show that a similar effect occurs for a boundary-layer flow like that 
in figure 2 when the obstacle is removed ( A  = 0). This piecewise uniform vorticity 
flow has a non-dimensional velocity profile a(y) such that ~ ( 0 )  = 0, a(y) = y for 0 < 
y < 1, and ~ ( y )  = 1-(y- l)c2 for GO > y 2 1,  where 0 2 cz > - 1 .  Further down- 
stream the vorticity interface is initially displaced from y = 1 by an amount which 
varies slowly with x. In  a coordinate system moving downstream with velocity + 1, 
let ub(x, t) denote the wall velocity, and uL(x, t) the interfacial velocity. At any point 
above the interface, the conservation of mass [in 00 > y > l+L(x,t)]  requires that 
u(x, y, t )  = u( - 00, y, t ) ,  and au/ay = - requires uL(x, t )  = -c2L(x, t). In  the lower 
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FIGURE 2. Schematic diagram of a piecewise uniform vorticity flow around a semi-circular cape. 
The displacement of the interface separating the two uniform vorticity domains is L(z, t )  = yL(z, 
t ) - i .  A small circular element of vorticity at (z,g) is shown, together with the three images 
necessary to satisfy the boundary conditions on all rigid surfaces. 

layer, the vorticity ( -  1) requires u,, = uL-( l  +L), and the conservation of mass 
requires 

aL i a  aL i a  
at 2ax at 2ax 

0 = -+--(u,+u,)(l+L) = - - - - ( ( 2 ~ , L + l + L ) ( l + L ) ) .  

Therefore aL/at + c,(L) aL/ax = 0, where the propagation speed in the moving 
coordinate system is c, = - (1 + L) - [,( 1 + 2L), and in the original coordinate system 
(stationary with respect to the wall) the propagation speed is 

c(L) = --L-Cz(l+2L). (2.14) 

For 5, = 0 all finite-amplitude elevation waves propagate upstream (c < 0 ) ,  and this 
also holds for small negative c2 provided L is sufficiently large. If Q < 0, the 
necessary condition for an upstream propagation is 

(2.15) 

for some L > 0. 
In a forced flow problem (53), such as may be produced by inserting an obstacle 

(figure 2) with large A ,  the maximum interfacial displacement L should be ($3) of 
order A - 1, and (2.15) suggests 

(2.16) 

as an estimate of the critical condition for a large amplitude upstream influence and 
a large blocking effect. We shall refer to this in $6.4. 

A - 1  
-[, - 1+2(A- l )  

3. Contour dynamical equations for boundary-layer flow around a semi- 
circular cape 

We turn to the main problem (figure 2). The laminar velocity at x = - co is again 

(3.1) 1 
given by 

for y < 1 
l-C2(y-l) f o r y a  1 ’ 
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where the lengthscale used in the non-dimensionalization is the upstream boundary- 
layer thickness and the timescale is the reciprocal vorticity of this layer. Then A 
denotes the non-dimensional cape radius, and L(x,  t )  = yL(x, t )  - 1 is the displacement 
of the interface above a y = 1 datum level. This will intersect the cape if A > 1, in 
which case another datum level 

yb(x) = max (1, ( A ~ - x ~ ) $ ,  (3-2) 

will be needed. 
The total velocity V(x, y, t )  is conveniently divided into three parts: 

v =  v,+ &+ V, ,  (3.3) 

where {a(!/),o)+ vA (3.4) 

is the sum of the undisturbed horizontal velocity (3.1) and an irrotational field 
VA(x, y) which makes the normal component of (3.4) vanish on all rigid boundaries. 
The V ,  field contributes an amount ( - 1) to the vorticity in the fluid region between 
y = 1 and the solid boundary, and c2 is the contribution beyond y = 1. The total fluid 
vorticity, however, will deviate from these values in those areas lying between the 
disturbed interface (L(x ,  t ) )  and the datum level (3.2). Therefore the velocity V, + V ,  
produced by these ‘ vorticity anomalies ’ must be added to V, .  For example, a t  Z, g in 
figure 2 L ( Z ,  g )  > 0, the total vorticity is ( -  l) ,  the undisturbed vorticity is f ,  and 
therefore the vorticity anomaly is ( -  1 - c2). The velocity field induced by all such 
elements in the presence of the boundary y u s t  be summed. 

An area element of vorticity anomaly 5 a t  (Z,g)Awould, in the absence of all 
boundaries, produce a streamfunction ( 4 ~ ) ~ ’  dZdgC[ln (x-z)~  + ( y - ~ ) ~ ]  at point 
(x, y). To satisfy the boundary conditions in figure 2 we add an image vortex relative 
to a (full) circle, and two additional image vortices relative to the symmetry plane 
(y = 0). The first of the three images is located a t  the ‘inverse ’ point (x’, y’) of (2, q), 
and the two latter images are a t  (x’, - y’) and (z, - g ) ,  respectively. The sum of these 
four point vortices (with appropriate signs) gives the contribution to the 
streamfunction of each vortex anomaly, and integration over (Z,g) gives the total 
streamfunction for V, + V, .  These four Green functions are conveniently re-grouped 
into two components, one of which is the sum of (z, 8) and its (z, - g )  image (figure 
2), this component being denoted by V, and by its associated streamfunction $o. The 
influence of the inverse point a t  

I 2’ = A2Z/(d  + y”), 
y‘ = A2Y/(d +p), (3.5) 

and its image (x‘, - y’) is combined in the second compPnent (t,hC, V , ) .  
As previoyly mentioned, the vorticity anomaly is 6 = - 1 - C2 if g > ybr and if 

g < yb then 5 = 1 + c2. Consider first the case where L(x, t )  is a single-valued function 
of x. Then the contribution to the streamfunctions of all the anomalies in the interval 
d z  requires an integration (of the Green functions) from g = y&) to 5 = yL(z) if 
yL yb, and if yL < Yb the integration goes from yL to Yb. Because of the changed sign 
of [ in these two cases it follows that for both 
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Similar considerations for the inverse point and its image give 
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It may be shown that if the interface is a multi-valued function of x the same 
relations hold, provided the d z  integration is performed along each line element of 
the contour. Although the computation of (u,,v,) may be reduced by means of 
Green’s Theorem to single integrals along the L(z , t )  contour, and along y&), the 
computation of V ,  = (uc, vC) requires an explicit cross-stream integration as well as 
a downstream contour integration. 

For the simpler case A < 1,  the datum level is yb = 1 everywhere. When the 
velocities obtained from ~, (with the aid of Green’s Theorem) are evaluated on the 
contour the result is 

(3.7) The interfacial velocities obtained from ~c are 

l+L(z)+y’  
(z - 2’)s + ( 1 + L(z)  - y’)2 - (z - z1)2 + ( 1 + L(z)  + y’)2 

and all z integrations are taken along the L(z,  t )  contour. 
The irrotational part VA of (3.4) was computed from a streamfunction y?A(r,8), 

using polar coordinates (r ,  8). Since the normal component of VA on the cape must be 
equal and opposite to cos 8a(y) = A cos 8 sin 8, we obtain I , ~ ~ ( A ,  0)  = $A2( 1 - cos 28) as 
a boundary condition, and $ A ( ~ 7  0) = $.,(r, 7c) = 0 for r 2 A must also be satisfied in 
the solution of Laplace’s equation. For this solution we used a Fourier sine series 

8) = -4A2 5 tYm-’ sin (2m- 1) 8 
R m-1 (2m- 1) [(2m- 1)2-4] 

(3.10) 

Then the Cartesian components of the velocity field were added to the undisturbed 
a(L) to get 

(3.11a) 
2m sin (2m8) 

‘u,(z,L(z, t ) ,  t )  = - 4A c c) - ( 2 ~ n - 1 ) ~ - 4 ’  
X m-1 

2m cos(2m8) l + L ( z , t )  ifL < 0, (3.11b) 
if L > 0, 

u,(z,L,t) = - 4A c c) - ( 2 ~ n - l ) ~ - 4 + { 1 - < ~ L  
R m-1 

r2 = x2 + y:, 
8 = arc sin ( y J r ) .  ( 3 . 1 1 ~ )  
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For use in $6.2 we note that when A+O and yL+ 1, the leading term in (3.11u), 
or 

8A3 x 
vus(x,y = 1) = 

3% ( x 2 +  1 ) 2  
(3.12) 

gives the asymptotic value of the interfacial velocity forced by the cape. 
When A > 1 (figure 2), yb(x) exceeds unity over a portion of the cape, the foregoing 

formula must be modified by changing the lower limit of the integration in 
(3.8)-(3.9) to yb(Z) (equation (3.2)). Additionally, in the denominators of (3.7) the 
term L2(x) must be replaced by (L(x)  + 1 -yb)2, and the term (L(x)  + 2)2 must be 
replaced by ( L ( x )  + 1 +Y~(z))~. Since no fluid exists in the segment 1x1 < xo = (A2 - 1); 
of the cape intercepted by yb = 1, (3.6) gives rise to an extraneous contribution 

to vo, and therefore this contribution was subtracted from (3.6). The Fourier series 
solutions corresponding to (3.11u, b )  must also be changed to 

m 

o, = - ( 1 + ~ 2 ) A ~ ( 2 m - ~ ) ~ m ( A / r ) 2 m s i n ( ~ m 8 ) ,  ( 3 . 1 3 ~ )  
1 

m 

us = - (1 + c2)A C (2m- 1) /3m(A/r)2m cos (2m8) + a(L), (3.13 b)  
1 

1 8,-$ ifm = 11 
i7cXpm =-sine, sin2(m-l)8, i f m +  1 1. 2m-1 

1 sin2m8, 2 +- sin 8, cos (2m- 1) 8, 
2m 2m-1 

cos 28, cos (2m - 1) 8, , 1 1 cos (2m+ 1) 8, cos (2m-3) 8, 2 
+i[ 2m+1 2m-3 2m- 1 

-~ 

8, = sin-l ( l / A ) .  

4. Limiting cases 

This uniform vorticity flow corresponds to  an elementary problem in potential 
theory, in which there are no anomalies ( V, = 0 = V, )  in the flow around the obstacle. 
A simple steady state exists in which L(x)  merely denotes the deflection of a 
streamline originating a t  ( - CO, 1). An expression for L ( x )  in polar coordinates ( ro(8))  
is obtained by setting the constant value of the streamfunction t$A(r ,  8) - y2 = @A(ro, 
8) -?& sin2 8 equal to - t ,  and (3.10) then gives an equation 

4.1. c2+(-1) 

1 

odd 

whose roots rJ8) were obtained numerically. 
The question then arises as to whether there exists a neighbouring steady solution 

for the interface when c2 is slightly greater than (-l),  in which case a first-order 
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differential equation, v = dL/dt = uaL/ax, has to be satisfied subject to two boundary 
conditions (L( - CQ) = 0, aL( + a)/& = 0). By perturbing uaL/ax-v = 0 relative to 
(4.1) a linear first-order equation was obtained, and a solution was shown to exist due 
to the fact that the leading-order term (from (4.1)) for v, is an antisymmetric function 
of x, and us is a symmetric function. This establishes one region (c2+-l) of the 
parametric space (A ,c2 )  in which there is a steady state. 

4.2. A + 0 for any fixed Q < 0 
In this case (3.12) and its (half-range) Fourier transform, 

4 A 3  

3x 
v, = - Re Jorn dk eikz e-k ik, (4.2) 

have small amplitude, and therefore the linearized equation vs + vo = aL/at + aL/ax 
may be used to compute the small L(x, t). Note that no vc component appears here 
because the equal and opposite vortices at (x’, y’) and (x’, - y’) in figure 2 are very 
close to each other at x = 0, y = 0 when A + O ,  and thus their dipole field on y = 1 
is negligible. 

The calculation for this forced linear problem is facilitated by noting that the 
functional relation (3.6) between vo and L must reduce to the same form as that which 
occurs in the corresponding free wave evolutionary problem when A = 0. Therefore 
when aL/at + (aL/ax - vo) = us is Fourier transformed using 

L(x,  t)  = Re dkeikzL^(k, t )  Jorn 
and (4.2), we obtain the forced wave equation 

where 

aL - 4 A 3  
-+ikc(k)L at = -ike-k, 3x 

(4.3) 

(4.4) 

(4.5) 

is the propagation speed of the aforementioned free waves (Stern & Pratt  1985). For 
an initial condition L(x,O) = 0 the solution of (4.3)-(4.4) is 

($)‘L(x, t )  = Re dkeikz[1 -e-ike(k)t]e-k/c(k). 1: 
When Q is negative definite, c(k) is positive definite, and the steady-state solution 

at finite x is obtained from (4.6) by discarding the term containing t. Of particular 
interest is the area 

UPAREA = L dx, (4.7) Irn 
bounded by L upstream from the cape, and this is readily found to be 

UPAREA = ~ 2.43 for - c 2 + O + .  
3( - C2) 

4.3. c2 = 0, A + 0 
For the singular case f = 0 the asymptotic value of L for t + “o, x < 0 can be 
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FIGURE 3. The small-amplitude ( A  + O )  solution computed from (4.6) when c2 = 0. (a) t = 60; 
( b )  t = 290; (c) maximum L as a function of Inti. The points lie on a line whose ordinate is 
0.998 In ti + 0.443. 
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computed by expanding c = k - i k 2 +  ..., and substituting this in (4.6). By setting 
k2 = l / t  and by discarding terms of order l/ti in c we then get 

When this integral is broken into two segments, the first going from z = 0 to z = 1 
(say), and the second going from z = 1 to z = CQ, then it is easy to show that the 
former is negligible as t + co, and the latter gives the asymptotic value 

By integrating (4.6) and then taking the t-limit it can also be shown that 

4 A 3  -1 

lim (%) [,L(x, t)  dx = +($)i($)i. (4.9) 

The plots of L(x,  t )  = 0 in figure 3 were obtained from the more accurate integral 
(4.6), and the best fitting straight line to figure 3 (c ) ,  L(0, t )  = 0.998 In t i+ 0.443, has 
a slope agreeing with the asymptotic value in (4.8). This calculation shows that a 
slow ( t - i )  rate increase in the area of the upstream boundary layer occurs for A + 0 
when r;Z = 0. The increase is compensated by an increase in the negative area of the 
downstream trough (figure 3b). 

5. Numerical calculation for A < 1 

The implementation of the formulae in $3 requires some discussion, after which 
results are presented which show that the blocking effect for A < 1 is similar to 
the linear case A+O. In $6 the more interesting case A > 1 is discussed. 

The Fourier series (3.11) was truncated after m = 10,5,3 terms, depending 
(respectively) on whether r / A  < 1.1, or 1.1  < r / A  < 3.0, or r / A  > 3. This choice was 
checked by running the main numerical program with c2 = - 1, and with the initial 
condition L(x, 0) = r,(B) sin 8 -  1 (equation (4.1)), in which case the expected 
stationarity of L(x ,  t )  was obtained. 

The V, component of the program utilizes a subroutine used and checked by the 
author in previous publications on the flow over straight boundaries. 

The V ,  component requires the largest computational time, since, in addition to a 
downstream integration, it requires a cross-stream integration (similar to that used 
by Stern & Whitehead 1990). This was accomplished by dividing the ordinate under 
each interfacial point into J equal parts, whose contributions to the cross-stream 
integral were summed using a trapezoidal approximation to the non-singular 
integrand for V,. It was ascertained that the number of subdivisions used, viz. J = 
2 + Int  (101L(), gave velocities insignificantly different from those obtained by 
tripling J .  A test for coding errors was provided by formally setting x' = Z, y' = 8, 
in which case the V, computer outputs from the double integration should be the 
same as the V, outputs (from a single contour integral) when both are evaluated at 
an x, y point lying slightly above the interface. The two numerical results differed by 
1 YO which is the nominal design accuracy of the velocity calculations. 

Initially the Lagrangian point separation was Ax = 0.1, and if the subsequent 
separation exceeded 0.15 a new Lagrangian point was inserted halfway in between. 
The y separation AL was also never allowed to exceed a specified amount (AL = 0.01 
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FIGURE 4 (u,  b ) .  For caption see facing page. 

for all the A < 1 calculations), and we also deleted neighbouring points when they 
came too close. A trapezoidal approximation to  the downstream integration was 
made, and a second-order Runge-Kutta approximation with a time-step 0.1 was 
used. To prevent points from going through the rigid boundaries, no points were 
allowed to come closer than a small distance (0.05), but this precaution was only 
necessary for A > 1. 

The left (minimum x) endpoint on the contour and the right endpoint were 
advanced with the undisturbed velocity ( 1 , O ) .  A new left point was inserted behind 
the old one when its distance from a 'designated' point exceeded 0.15, and this point 
was moved slowly upstream to avoid endpoint contamination by the upstream 
propagating wave. When a new endpoint was inserted its L-value was not set exactly 
equal to  zero (as would be appropriate if x = - 00)  but its (very small) value was 
determined by a linear extrapolation of the slope of L at the endpoint. This procedure 
avoided generating artificial 'kinks ' in the curve which would have been propagated 
downstream into the main area of interest. Preliminary tests using fixed endpoints in 
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FIGURE 4. The solution of the contour dynamical equations when 5, = 0, A = 1 ,  for the initial 
condition (5.1). Only the tip of the semicircular cape is shown. (a) A plot of a portion of L at three 
times showing the upstream (r < 0) propagation. ( b )  A full scale view of the same run. (c) The 
temporal continuation after ‘truncating’ (see text) a downstream portion of t = 30.1. ( d )  A full 
scale view oft = 65.1. 

- 10 < x < 10 showed a systematic drift in the total area bounded by L,  but this 
error was greatly reduced by increasing the initial interval to -20 < x < 10, and by 
allowing the (right/left) endpoints to move (downstream/upstream) a5 indicated 
above. 

Calculations were made for different values of (c2, A )  using an initial condition 
given by the solution of (4.1), viz. 

L(z ,  0) = To(@ sin 8- 1 with A = 0.9, (5.1) 

(5.2) 

Since the results of many runs for A G 0.9 were all qualitatively similar to the 

and in some of the following calculations this was increased to 

L(x, 0 )  = 2[r0(8) sin 8- 11. 
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FIGURE 5. Same as figure 4(a) except that L(z,  0) is twice as large. 

A = 1.0 run, and quantitatively weaker in increasing the upstream area, only the 
A = 1 run will be discussed. The evolution of (5.1) with 300 initial Lagrangian points 
in -20 < x < 10 gave figure 4(a, b )  for L(x ,  t ) ,  and a t  t = 30.1 there were 730 points in 
-26 < x < 40. This evolution is qualitatively similar to the linear theory (figure 
3a) even though A is not small. The increasing upstream area is compensated by the 
downstream trough in L,  and figure 4(b)  also shows the rapid downstream 
propagation of the short waves. 

In order to concentrate on the further ( t  > 30.1) upstream development, a crucial 
assumption is now made to continue the calculation (with the computational 
resources available). It seems intuitively reasonable that anomalies far downstream 
from the cape will have a relatively minor influence far upstream, and therefore we 
truncated the downstream interface by setting L = 0 at all (Lagrangian) points 
succeeding one of the zero crossing points (L  = O),  while leaving the upstream portion 
of the interface unaltered. This edited data then becomes a new ‘initial ’ condition, 
and although the downstream evolution will obviously differ from an untruncated 
continuation, we believe that the truncation will only have a relatively small 
influence on the evolution upstream from the cape, and particularly on an integral 
property like (4.7). Evidence for the validity of this procedure will be presented. 

When the t = 30.1 curve was truncated a t  the first zero-crossing (x = 3.77) the 
continuation yielded figures 4(c)  and 4 ( d ) ,  and we note that at t = 65.1 the 
previously truncated downstream trough has been re-established. Of greater 
significance is the absence of any pronounced break at t = 30.1 when (4.7) is plotted 
as a function of tf (figure 6, solid points), and this continuity provides evidence that 
figure 6 would be the same even if no truncation had been made. For additional proof 
the calculation was repeated with L(x,O) doubled (i.e. (5.2) was used). This places 
some vortex anomalies so far above the cape that they tend to be ‘blown’ 
downstream, causing the ridge (figure 5 )  to collapse, generating a short wave which 
propagates downstream. The wave produces the ‘knee’ a t  t = 2.5, but afterwards 
( t  = 30) the near-field evolution is similar to figure 4(a), and L a t  x < 0 continues to 
increase with time. At t = 37.5, L was again truncated a t  its first zero crossing 
( x  = 4.8), and the calculation was then continued (not shown). The open squares 
(figure 6) for this run also show continuity and a near linear increase of upstream area 
with ti. Since the asymptotic slope is nearly the same as the previous run, it is 



Blocking a n  inviscid shear flow 463 

0 . 8 i  

0 1  I 

1 2 3 4 5 6 7 8 9  

FIGURE 6. Plot of the integral of L(z ,  t )  from x 7 - co to x = 0 for A = 1, 5, = 0. The solid pointh 
are for the run in figure 4, with a truncation af ti = 5.49. The open points are for the run in figure 
5 (different initial data), with a truncation a t  ti = 6.12. No discontinuity a t  truncation is apparent 
in a curve which could be drawn through the points. 

14 

concluded that the upstream behaviour a t  t + 03 is independent of both the initial 
conditions and the downstream truncation. For 30 < t < 90 the two slopes are 
approximately 

d(UPAREA)/dti = 0.22 (A = 1) .  (5.3) 

The velocities computed a t  t = 30.1 along the lower rigid boundary revealed an 
upstream minimum u = -0.25 a t  x = - 1.6, y = 0. Stagnation points occurred on the 
cape a t  x = -0.86 and x = 0.87, and on y = 0 a t  x = 4.3,16.7,22.4,26,29. Such points 
are associated with closed streamlines, and the strongest of the downstream eddies 
(minimum u = -0.21 a t  x = 1.4) occurred in the immediate wake of the cape. On the 
upstream side of the cape a clockwise eddy forms as 5 = - 1 fluid near y = 0, x = - A  
moves upstream, cross-stream, and then downstream to the forward stagnation 
point on the cape. But all of these eddies are thin in the cross-stream direction. 

6. A > 1. Strong blocking 
The modified V ,  for this case (equations (3.13a, b ) )  was checked by computing the 

normal velocity a t  a point on the cape for A = 2. The magnitude was 5 x loe3 when 
ten terms were retained in the Fourier series, and the magnitude decreased to 8 x 
when the number of terms was increased to 50. The convergence of the series will be 
much more rapid for interfacial points which do not lie on the cape. The modified V ,  
and V, algorithms were tested in the same way as was done for the A < 1 case. The 
results of the A > 1 runs are as follows. 

6.1. A = 1.35, c2 = 0 

Using the same initial data (equation (5.2)) as in figure 5 ,  figure 7 was obtained 
without truncation. Once again we see the development of a broad downstream 
trough (L  < 0) induced by the clockwise vortices over the cape. The plot (not shown) 
of the upstream area 

( ~ L ( ~ , t ) - y b ( x ) d x  (6.1) 
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Plot of L(z,  32.5) for A = 1.35, 5, = 0 with an initial L(z ,  0) 
used for figure 6. 
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FIGURE 8(a, b ) .  For caption see facing page. 

identical to that 
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FIQURE 9. Plot of upstream area of L(z ,  t) as a function of the first power o f t  for the whole 
time range of the figure 8 run ( A  = 2, C2 = 0).  
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for this case was similar to figure 6, and the rate is given by 

= 0.48, 
d(UPAREA) 

dt; 

or = 0.26. 
d( UPAREA) 

A 2  dt; 

This normalized equation is also satisfied by the run pertaining to (5.3). 

X 

FIGURE 8. Plot of L(z ,  t )  for c2 = 0 and A = 2 using a larger L(z,O) than in figure 7. (a) A small- 
scale ridge/trough system develops and propagates downstream until ( t  = 16) the ridge wraps 
around the trough, thereby surrounding irrotational fluid with < = - 1 fluid. ( b )  A continuation in 
which the t = 16 data was truncated by removing the small-scale plumes at large z. Note the 
inflection point in the region upstream of the cape a t  t = 56. ( c )  At t = 96 the inflection has 
developed into a minimum and a maximum. Kote the tendency for the irrotational fluid to  
approach the wall (y = 0) downstream from the obstacle. 

t 

FIQURE 9. Plot of upstream area of L(z ,  t )  as a function of the first power o f t  for the whole 
time range of the figure 8 run ( A  = 2, 5, = 0).  

for this case was similar to figure 6, and the rate is given by 

= 0.48, 
d(UPAREA) 

dt; 

or = 0.26. 
d( UPAREA) 

A 2  dt; 

This normalized equation is also satisfied by the run pertaining to (5.3). 
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To prevent the t = 0 interface from intersecting the cape we used a.n initial condition 
three times the value used for A = 1.35, so that L(0,O) = 1.46, and thus the height 
of the ridge above the cape was 0.46. This distance is sufficiently large so that some 
of the vortex anomalies at the top of the cape are once again blown downstream, 
producing a secondary maximum L.  At t = 8 (figure 8a)  this secondary ridge appears 
as a thin plume containing clockwise vortices, and further downstream this induces 
the thin plume containing irrotational fluid. At t = 16 the latter is entrained in the 
y = - 1 layer. The plot (not shown) of UPAREA as a function of ti for this period 
gave 

- d(UPAREA) = 0.24 (4 c t c 16), 
A2 dti 

- 1  I I I 
I I I I I 
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X 

FIGURE 10(a, b ) .  For caption see facing page. 

6.2. A = 2, 5, = 0 

which is the same as (6.2) (but the absolute rate (0.24A2) in this case is four times 
larger). The calculation was continued in time after truncating the t = 16 output so 
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FIGURE 10. Larger amplitude than in figure 9:  A = 3, 5, = 0. L(x,0) = 2.5/(1 + ( X / A ) ~ .  ( a )  The 
L(x, t )  curves show the development of a large clockwise eddy in the wake of the cape. At t = 9 
and x - 5 the large upstream velocity near the wall produces the filament of irrotational fluid which 
approaches the base of the cape, and then ( t  = 17) rises. (b )  Continuation of figure 10(a) obtained 
by truncating its downstream part at t = 19 (compare t = 20 with t = 17).  At t = 40 there is no 
change in L over the cape, but there is a large increase in upstream area accompanied by a 
maximum and a minimum L.  (c) A continuation of figure 10(b) obtained by truncating the t = 40 
result beyond x = 15.5 ( L  = -0.05) and smoothing L to zero. The result is shown a short time later 
( t  = 42), and later ( t  = 72) the minimum upstream L = 0.67 (at x = -2.7) has decreased 
considerably due to the downward velocities induced by the large amount of anti-cyclonic vorticity 
further upstream. Also note the nearly complete attachment of the irrotational free stream to the 
downstream wall. This diagram shows that essentially none of the vortical fluid in the upstream 
boundary layer passes around the cape. 

as to remove all Lagrangian points beyond the second zero crossing point (figure 8 a ) ,  
which occurs at the relatively large value of x = 11.5. The ‘new initial condition ’ 
then consisted of a single-valued L having a ridge over the cape and one complete 
trough downstream. Forty time units later (figure 8 b )  L(z, t )  is still increasing a t  
x < 0, and a ‘knee’ (the broad inflected region) appears. The region upstream from 
this is sufficiently far from the cape, and L is sufficiently large, so that a pronounced 
free wave steepening effect (according to (2.14)) may be expected a t  larger t ,  and we 
also expect that  the accumulating upstream vorticity anomalies will induce 
downward velocities on the cape (x < 0). Both of these expectations are confirmed in 
figure 8 ( c ) ,  where the inflected knee has evolved into a maximum and a minimum. 
The downward w-motion a t  and below this minimum L indicates a strong blocking 
of the approaching boundary-layer flow. This is confirmed (figure 9) by plotting 
UPAREA against the first power of t. The ‘&regime’ of early times ( t  < 12) gives 
way to a ‘ tl-regime ’, implying that a constant fraction of the boundary-layer flux 
from x = - co is recirculated upstream by the blocking. Although no truncation after 
t = 16 was made we see (figure 9) that  a t  t = 61 the upstream area starts to increase 
even more rapidly, at the same time as the inflected region (figure 8 b )  develops into 
the minimax region (figure 8 c ) .  The development of the upstream minimum L,  with 
the associated negative v, is a clear indication that the increase in upstream area 
(figure 9 at large t )  is not due to  a small systematic and cumulative numerical error. 
Figure 8(c) also shows that the interface behind the cape plunges towards the wall 
(y = 0, L = - 1) indicating a tendency for the free stream (& = 0) to  reattach. 
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FIQURE 12. Same as figure 10 except c8 = -0.1 showing that a small amount of boundary-layer 
fluid now passes around the cape. 

6.3. A = 3, c2 = 0 
To avoid intersection with the cape, a further increase in the initial amplitude is 
required, and (for the first time) the interfacial shape was also changed to  

2.5 
1 + @/A)*  ' 

L(x,O)  = 

The initial distance (0.5) of the L-ridge above the cape is approximately the same as 
in the previous run, and the evolution (figure 10a, b )  is qualitatively similar but 
quantitatively more extreme. The clockwise vortices blown downstream accumulate 
at t = 17 in a large clockwise wake eddy, whose base lies on y = 0. This evolved from 
the t = 9 flow as the thin plume of irrotational fluid wound clockwise along y = 0, and 
then rose t o  almost detach a 6 = - 1 eddy. At t = 19 (not shown) there is a large 
upstream velocity u = -0.53 at the base (x = 5.4) of this eddy, and a t  (x = 3.01, 
L = -0.4) there is a large positive w = 0.31. Thus almost all of the boundary layer 
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FIGURE 13. Same as figure 12 except 5, = -0.6 (no data truncation). The initial ridge 
propagates rapidly downstream as a secondary ridge. The ridge velocity u(0,22.6) 
sufficient to transport almost all of the boundary layer downstream. 

x = O  
3.6 is 

flowing around the cape goes into the wake vortex. Further downstream ( x  = 13, 
y = 0.05) on the wall (at t = 19) there is a large downstream wall velocity u = 0.71, 
indicaking that the downstream boundary layer is being pushed away by the 
‘reattaching ’ free-stream of irrotational fluid. We are unable to  pursue these 
extremely interesting downstream effects (will the wake eddy by permanently 
trapped 2 )  further in time because of the large number of Lagrangian points, because 
a proper ‘surgerizing ’ algorithm (Dritschel 1988) is required, and because we decided 
to focus on the upstream effect. Consequently L(x, 19) was truncated beyond the first 
zero-crossing (L  = 0) a t  x = 10.3, and the continuation with this new initial condition 
is shown in figure 10(b, c ) .  The slight upstream knee inflection at t = 20 again 
develops ( t  = 40) into a more pronounced minimax. The interfacial point 
L(0,72) = 2.05 is essentially on the cape since the numerical program does not allow 
the distance of Lagrangian points from the cape to be less than 0.05. The same is true 
for all points -2.47 < z < 1.16, and a t  x = -0.27 the minimum L has a small 
negative w. Thus we see that a t  t = 72 essentially none of the cz = - 1 layer fluid is 
flowing around the cape, and all of this fluid is accumulating in a large clockwise 
vortex lying upstream from the cape. This complete blocking of the boundary layer 
is also implied by the temporally increasing rate of change of the upstream area, as 
indicated by the &. = 0 points in figure 11. If there is any break or discontinuity a t  
the truncation times ( t  = 19 and t = 40) it is no larger than the irregularity of 
adjacent points between these times, and thus a smooth curve could be drawn 
through all points, thereby supporting the assumption that the increase in the 
upstream area is negligibly affected by the truncation. 

6.4. Decreasing with A = 3 
We then decreased the upper-layer vorticity to f = -0.1 (other things being equal) 
in order to show that blocking can occur for large L even when infinitesimal 
amplitude long waves propagate downstream (cf. (2.14)). 

The initial evolution for cz = -0.1, A = 3 was similar to  that in $6.3 insofar as a 
large clockwise wake eddy formed, but its size was smaller. For example, a t  t = 13 
(not shown) the minimum distance of the interface from the wall was y = 0.08, as 
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initial condition yields a finite blocking fraction (see text), but for a larger W = 1.5 there was no 
blocking. 
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compared to y = 0.05 when I& = 0. Also, as in figure 10(a), a thin intrusion of 
irrotational fluid near y = 0 in the lee of the cape moved upstream and wound 
clockwise around the wake eddy. The t = 13 output was then truncated beyond the 
first zero crossing, and the run was continued uninterruptedly to t = 63.5. Figure 12 
shows the upstream propagation leading to  the same kind of inflection point (a 
‘knee’) a t  L( -4,63.5) where u has a minimum (+ 8 x nearly equal to zero. A t  
x = 0 the maximum L (=  2.15) is now a t  a significant distance (0.15) above the top 
of the cap, and the large velocity u(0,63.5) = 2.0 enables a finite fraction of the wall 
layer (y = - 1.0) to flow around the cape. This can be seen from the slope of the curve 
connecting the 5, = -0.1 points in figure 11. The decreased slope of the = -0.1 
curve (figure l l ) ,  compared to [, = 0, combined with the steady solution for c,+- 1 
suggests that there is a critical 5, < 0 above which the rate of increase of upstream 
area is greater than zero when t + co. An estimate of the critical c2 can be obtained 
from (2.16), and for A = 3, the approximate c2 is -0.4. Therefore, we set c, = -0.6 
[keeping everything else the same as in the 6, = -0.1 run (figure 12)] expecting that 
the blocking should vanish a t  large t .  The reduced vorticity anomalies in this case 
cause a large fraction of the ridge (figure 13) to be rapidly blown downstream, after 
which L(x, t )  appears to be approaching a steady symmetrical distribution about 
x: = 0 (at least for z < 10). Further evidence for vanishing blocking is supplied by the 
plotted 6, = -0.6 points (figure l l ) ,  which indicate that the rate of increase of 
upstream area rapidly approaches zero. Therefore the critical 5, lies between -0.6 
and -0.1, and is in rough agreement with the theoretical estimate f = -0.4. 

The general inference from this calculation is that even for large obstacles there is 
a critical cross-stream distribution of undisturbed vorticity for which no upstream 
influence (and no modification of the source region) occurs. Otherwise such a large 
obstacle may modify the upstream vorticity distribution so as to bring about a new 
state satisfying this critical condition. 

Further evidence for this conclusion was obtained by adding a uniform 
downstream velocity W a t  x = - 00. Since this increases the downstream propagation 
of all waves, a sufficiently large W should also remove the blocking effect obtained 
(figure 10) for 6, = 0, A = 3. In  order to expedite this new calculation, a convenient 
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initial condition was used which eliminates the large wake vortex found in the 
previous ( A  = 3) calculations. Accordingly, the last output from the g, = -0.1, 
A = 3 run was truncated to obtain the L(x, 0) shown in figure 14. The evolution of this 
for W = 0.25 gave 

but when W was increased to 1.5 (keeping everything else the same), the rate of 
increase of upstream area (5 x a t  t = 16 was essentially zero. Thus there is a 
critical W (between 0.25 and 1.5), such that all influences are propagated downstream, 
and no blocking occurs. 

d(UPAREA)/dt = 0.19k0.005 (10 < t < 20), 

7. Conclusion 
A large obstacle placed in the ‘boundary layer ’ of an inviscid flow can produce an 

upstream influence, which blocks the boundary layer and accumulates vorticity in a 
large upstream eddy. 

Although finite Reynolds number flow is beyond our scope, i t  is worth noting that 
the accumulation of vorticity in such eddies is observed (e.g. p. 35 of Schlichting 
1968) when a blunt obstacle is placed a t  some distance downstream from the leading 
edge of a flat plate (Blausius flow). The resulting upstream regime is very different 
from that which occurs when either the plate is removed from the obstacle, or the 
obstacle is removed from the plate. It is suggested that the purely inertial effect 
studied herein is relevant to the establishment of the upstream eddy when the 
boundary plate is present. 

The flow downstream from the obstacle (figure 10a) is also drastically modified, 
but the computational technique used to study the upstream effect has not allowed 
an adequate investigation of the wake field. 

In classical open channel hydraulics, blocking of a uniform stream does not occur 
when long waves are capable of propagating upstream from an obstacle, and it is 
therefore noteworthy that blocking only occurs in our barotropic shear flow when 
long waves can propagate upstream. The role of barotropic shear as well as gravity 
effects should be taken into account in determining the controlling effect of ocean 
straits and topography on large-scale currents, and in producing upstream or 
downstream transitions in the flow past coastal irregularities. 
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